
TWO-WEEK LOAN COPY 

This is a Library Copy 

which may borrowed for two weeks. 

a personal copyy call 

Info. Divisiony 6782. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Govemment nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Govemment or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Govemment or any agency thereof or the Regents of the 
University of Califomia. 



l LBL-10519 

THE MODEL WITH UNCONSTRAINED VARIABLES t 

* H. E. Haber, Ian Hinchliffe, and E. Rabinoviei 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

USA 

February 15, 1980 

ABSTRACT 

The model is investigated in terms of unconstrained 

variables in both the Lagrangian and Hamiltonian formulations. 

The presence of a gauge ambiguity is intimately related with. 

confinement and the appearenueof a dynamically generated vector 

field. Various aspects of the spectrum of states in the large 

N limit are investigated. 
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INTRODUCTION 

The study of models in which appear in non-linear 

representations has played an important role in several areas in 

particle physics. In recent 
2 

' the emphasis has shifted from 

studying the non-linear aspects to uncovering the linear properties 

of naively nonlinear models. In attempts have been made 

to uncover a linear version of QCD 3 (at least in the limit of 

large N). In this paper we wish to investigate similar questions 

in such a model, the model. There has recently been much 

interest in this ,S, 6 The model is asymptotically free, 

possesses instantons for any N, is expandable in 1/N, and 

exhibits<:: non -trivial confinement mechanism. All this has led to 

speculation that the model may be a testing ground for some ideas in 

QCD. The analysis of t.he model as carried out previously is in terms 

of variables with a constraint. The 

£ = (3 z) + f/2N ,_, 2 
]J 

with zizi = N/2f 

z is a column vector with N entries and f is a constant. Thr 

generating functional was examined by introducing dummy fields a 

(to impose the constrant) and 

<--+ 

Zd Z 
if _]J_ 

IN' 

(to render the Lagrangian quadratic in z). A 1/N expansion then 

reveals that to leading order in all N zi fields get a 

non-zero mass m, and to next order a long range force appears 
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(the field acquires which leads to confinement of the 

zi particles into SU(N) multiplets. 

Motivated by the of the 1/N limit, the physics 

being determined by the next to term, and the non-trivial way 

in which the All field is introduced, we determined to 

the model in terms of unconstrained variables . By fixing a gauge 

and transforming to a non-linear representation of 1
, we are 

able to write an equivalent Laga~gian in terms of unconstrained 

fields. The resulting Lagrangian has a gauge ambiguity not dissimilar 

to the Gribov ambiguity in QCD. 7 The Lagrangian is then analyzecl 

in a 1/N expansion and the appearance of the gauge field A 
jJ 

is 

intimately related to this gauge ambiguity. Section 2 is concerned 

with this Lagrangian formulation. 

In Section 3, we investigate the Hamiltonian derived from our 

Lagrangian. In the O(N)/O(N-1) non-linear sigma model, which is 

contained within our Hamiltonian by dropping some terms, we are 

able to obtain the vacuum state and the restoration of the symmetry. 

In the CPN-l case the Hamiltonian has a singularity associated 

with the gauge ambiguity which plays a crucial role and provides 

an immediate signal for confinement. 

In Section 4 we analyze the spectrum of the model in the 1/N 

limit, pointing out that the lowest lying states form an adjoint 

representation of SU(N). We comment on the connection between this 

spectrum and the one computed in the limit of strong coupling limit 

of the lattice version of the model as formulated by Stone. 8 
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2. LAGRANGIAliJ FORMULATION 

The Lagrangian of the model as written in terms of 

constrained fields
4 

is 

£ (() z)((J z) + A/4 
2 

jJ jJ 
(2.1) 

with zz 4/"A 

zi is an N component col~mn vector, in zz a sum over the index i 

is implied. We have defined "A = 2f/N. In order to re-write the 

Lagrangian in terms of unconstrained fields it is nessesary to go 

to a non-linear representation of the coset space 

SU(N)/S(U(l) X u (N - 1)) 

The 's transform linearly with respect to SU(N). A non-linear 

transformation on the variables of the type 

f(<);cp )cjli 

where f is any function of ¢¢ for which f (l) = l will 

preserve the S-matrix of the zi fields. The simplest non-linear 

transformation which leads also to unconstrained variables is 

= for i = 1, ...... N- 1. Unfortunately this trans-

formation is singular when zN = 0, a set of configurations for 

N-2 which the model reduces to the CP model. we may 

_N-1 N-2 · l write CV · = CP U , where corresponds to the uncon-

strained variables and the CPN-Z correspcn:ls to the singular 
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point 0. We shall use a non -linear representation which 

naively has no such problem. The Lagrangian 2.1 is invariant under 

local gauge transformations z + ei 1\(x) z; we will use this invariance 

to fix to be real for all x (by obvious analogy we refer to 

* this as theuni tary gauge) . 

define unconstrained ¢i for i = 1, .... N- l by 

The real 

z. 
l 

¢/(1 + 

field is determined the constraint = 4/;\ 
10 

i = 1, ... N. This transformation was used by Bardeen et. al. for 

the O(N)/O(N - l) non-linear sigma model. With this choice of gauge 

£ 
(3]J ¢) (3,,¢) 

--'=-----"1-':....,2 + 

(l + i ¢¢) 

!c 
4 4 (2.2) 

¢ is now unconstrained and usual field theory methods can be applied 

to "ii:. In particular a Hamiltonian can be derived (see next section) 

for the system. The Lagrangian 2.2 as expressed in terms of 

unconstrained fields ¢ bears a strong resemblence to the original 

Lagrangian (Eq. 2.1), as expressed in terms of the N complex 

constrained zi fields. In fact in the subset of the constrained 

¢ fields obeying the constraint 

¢¢ 4/A 

* We are restricting ourselves to the 0 0 

sector this singular gauge transformation. 
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the still possesses a local gauge invariance. Note 

that this which we refer to as a Gribov ambiguity, 

exists only for large field configurations. The infra -red finite 

perturbative calculations, using massless zi fields but group 

this ambiguity. Since 

it is clear that the reason for this residual gauge invariance 

is that when zN = 0, the specification of the phase is meaningless 

and does not fix the gauge at all. This difficulty is analagous 

to the at zN = 0 in the simple ective transformation 

discussed earlier. While the source of this is clear its 

physical implications depend on the dynamics of the system. A priori, 

the complete classification of the configurations leads 

to a set of zero measure. Hovever in the large N limit, we find 

that has a vacuum expectation value: 

4/!c 



The off-shell at s = corresponds to the appearance of 

another particle degenerate with the ¢'s and a full restoration 

of the SU(N) symmetry. The last terms, the cut of T
22

, may 

be viewed as a short range potential be between the ¢'s, we will 

return to it later. 

Now consider the contribution of the i 3 part to 

rl 4
). Firstly :E

33 
which corresponds to the graph shown in Figure 

must be evaluated, 

AN 
T f (2k + q) (2k - q) 

]J \) 

2 2 2 2 (k - m )((k - q) -m ) 

The integral diverges, however we can evaluate it by means of the 

renormalization prescription Eq. 2.3. 

where 

with 

B 
].1\! 

r C z) 
].1\! q 

q q ) 
- ]J \) ----z-

q 

1 1 
21T 

~,--=--~__,"" log 
(q (q - 4m ) ) 

2 

The bubble sum is Qiven by -iA(p + p ) T (p + p ) - 1 2 ]J ]JV 3 4 \! 

B + 
].1\! 

i.e. 

2 
A;\) 

12 

(2. S) 

It is clear that we have encounted a non-invertable term. This term 

is characteristic of a vector field with a gauge invariance. It will 

be necessary to further fix the gauge in order to proceed. This 

problem can be resolved because the vacuum has chosen the ambiguous 

field configurations. We have the free~om to further fix the gauge 

by choosing a Lorentz gauge for 

enable us to invert equation 2.5 i.e. 

then 

0 

a 

----=---b~]J~\!--~-------
q2)A(oh - 1/n) 

Tbe full vertex is then obtained by inserting 

and s channels 

(2.6) 

into both t 

- p 7 ) T (t)(p2 - P4) 
J ]J ]J\! \) 

(2. 7) 

and adding this term to Eq. 2.4 

We can now compare with the work of D' Adda et. al. 4 . They 

obtained an effective Lagrangian in which the interaction between the 

z particles (which now have a rrass as a result of the symmetry 



restoration) interact via a short range scalar interaction (called a) 

and a long range gauge field (called A ) . The short range piece a ]J 

is already present in the O(N)/0(\!-1) case, it corresponds to the 

last tenn in Eq. 2.4 and is the cut piece of the 3]J¢<l]J¢ propagator. 

The gauge field produces an interaction identical to that of Eq. 2.7. 

That is for small all constants in the nurr£rator of Eq. 2.6 cancel 

and 2 g]JV/q . A weak long range force appears which radically 

alters the spectrum of the system. We note that we have added a 

Lorentz condition on the configurations detemining the photon 

propagator, this is justified for ¢ such that ¢¢ = 4/A. The 

infomation we used was only that the expectation value of ¢¢ is 

4/A in the 1/N vacuum. However for N ~ oo the is 

essentially a free field theory of bound states 

and all its discon11ected Green functions factorize. This 

means that a certain set of classical configurations detemines 

all the bound state Green functions in this limit, and in 

particular the set 4/A dominates the functional integral. 

In our formulation the two fields a and appear naturally 

and the fact that the gauge field acquires real dynamics is exemplified 

by the fact that it is necessary to further fix a Lorentz type gauge. 

obtained the coMplete long range force in a Lagrangian fom-

ulation, we tun1 to the Hamiltonian formulation in which the caution 

which needs to be exercised in a 1/:'J expansion is more explicit. 

14 

3. H4l'vliLTONIA\! FORMULI\TJOJ_\J 

A Hamiltonian fomulation of the model is made 

by the use of unconstrained variables. The Hamiltonian will be set 

up in the unitary gauge; attempts to work in an axial gauge will 

be discussed briefly later. The canonical momenta 

from the Lagrangian 2.2 are 

cS 

with 

D 

1 
D2 

derived 

and the dot denotes differentation with respect to time. We are able 

to construct the Hamiltonian 

H 

+ 1 
D2 

;>.. 

4 
1 

Several comments should be made concerning this Hamiltonian. The 

ordering of the operators is not defined. Fortunately problems 

associated with operator ordering will not appear in leading order 

in 1/N. There is a pole in the Hamiltonian when ¢"¢ = 4/:\ , 

the field configurations for which a residual gauge invariance 

exists. The residue at this pole which is -A 
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is to the operator. This is reminiscent of 

Mandelstam•s 2 and Gribov•s 7 treatement of the QCD Hamiltonian 

in the Coulomb gauge. A term of the form 

* 

0 l 0 . 6 . appears 

there. Care should be taken to avoid infinite energy states (states 

in which l 

6 
has non-zero support). The appearence of a term 

containing on the one hand a pole and on the other hand a factor of 

l/N is a warning signal in the way of a l/N expansion. The 

physical consequences of this structure will be determined by the 

specific dynamics of the . .;ysterL Despite this ambiguity. we wish 

to emphasize that our Hamiltonian will have no problems if it is 

used for perturbation theory about the vacuum ¢2 
= 0. 11/e thus 

proceed to study the Hamiltonian in the naive 1/N limit. In 

that case, assuming that the operator C¢n - n¢) has zero vacuum 

expectation value (no breakdown of charge cor,servatimi), the model 

then reduces to the 1/N limit of the O(N)/O(N-1) model. We 

will attempt to construct the vacuum state of that system by means 

of a Hartree approximation. The O(N)/Oi.N-1) case is obtained by 

dropping the last two terms in the Hamiltonian (equivalent to the 

naive l/N limi':), leaving 

------------- -----
* The operator 6 is defined in Ref. 7 as 
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The vacuum energy of this Hamiltonian can be obtained from the trial 

decomposition 

(x, t O)=f dk i ikx b~ie -ikx) (ak e + 

21T/2~ 

(x,t (b~ 8
ikx ti -ikx 

+ e ) 

(x, t dk (' i ikx -ikx) 
2TI Dk e 

1Ti (x, t 0)= dk i ikx b~ie -ikx) -
21T Cake 

with 

aq oijo(k- q) 

l = 0 (k - q) 

and all other commutators zero. The vacuum energy< O!HIO > 

is a functional of ~ given by 

~) [ 1 + 

-2 
(3.1) 

minimizing functionally with respect to w£ 

implies that the following integral equation for w£ holds 

E vac 

0 
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0 N rl +AN s~J 2 
2 4 4TI~ 

+ 

_ !i C (1 + N\ J dk _) -
2 

2 w~ 4 4n~ 

2 J 2 f -3 + N :\ ~£ (1 + N:\ ~ ) 
~ 4n~ 4 4n~ 

We note 1hat 

< Oi¢¢\0 > = N dk 
4TI~ 

and try a solution of t.-le form k2 ~ - m2. The conditions for 

a solution are 

and 

4 
A = (1 + i < ¢¢ >) = <D>4 

2 m -z---
wQ,I 

(
1 - A< ;jiq, >) 

Z<D> 0 

Therefore either m = 0 or < ¢<P > = 4/:>c corresponding to the two 

possible solutions in the Lagrangian case. By Coleman's theorem11 , we 

knov: that in 2 dimensions the vacuum will always pick the second 

solution. Note that in the case of < ¢<P > = 4/:>c, we may compute 

the above integrals using dimensional regularization and solve 

for the mass m. The result is the same as obtained previously 

(see eq. 2.3). 

18 

In the case there are two additional terms in 

the Hamiltonian, but as previously discussed they make no 

contribution to the vacuum energy in the large N limit. 

Consequently we have the same structure for the vacuum, as 

in the Lagrangian approach. However it is important to notice 

that the vacuum has chosen to sit on the apparent singularity in 

the Hamiltonian. There are two atiitudes that one could adopt at 

this The Hamiltonian may not be valid for these 

field configurations since it is derived from a Lagrangian which 

contains some redundancy in the form of a residual gauge invariance. 

Consequently a new gauge fixing should be adopted to eliminate this 

gauge freedom. This will be discussed later. The alternative 

more appealing) attitude is to say that this singularity is a 

signal for confinement,as we find that charged one particle states 

have infinite energy in this gauge and that thus do not constitute 

the lowest excitations to the vacuum. We are not able to explicitly 

construct the lowest energy excitations of the vacuum but we can 

outline the structure of a finite energy state. This finite energy 

state is a particle - bound state which resembles 

a quantum bag. This state is in the naive 1/N vacuum outside the 

line-section (-a,a) (its charge density outside this sector is 

identically zero, voiding the effect of the pole) . All its energy 

comes from charge fluctuations in the (-a, a) region. The infinite 

energy is avoided by being in the&ymptotically free perturbation 

theory vacuum < ¢¢ >= 0 in this region. The excitation energies 

of this bag will essentially follow the bound state energies of a 

linear~ulomb potential. Note that similar to the Lagrangian case 
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we are assuming that < l_ > = 
1 

+ 0 c.!:) 
¢¢ < ¢¢ > N 

We conclude this section by mentioning an attempt to construct 

the Hamiltonim1 in m1 axial gauge. The axial gauge condition 

cm1 be implemented by solving for in 

0 

with i 1, ... N - l 

i.e. 

We did not srceed in expressing the Hamiltonim1 in terms of uncon-

strained variables, nevertheless we suspect that the symmetry is 

restored by having the expectation value of zN vanish. For the 

naive 1/N limit it vanishes because< zizi> becomes of order 

4/A while to next order zN vm1ishes because the phase factor 

wildly oscillates. These large oscillations are related to the 

formation of a linear potential emphasizing terms of the form 

¢a-;¢. Our failure to write down the Hamiltonian is unfortunate 

because we expect to obtain a range force directly in axial 

gauge. 

4. SPECTRUM IN THE 1/N LIMIT 

= 0 

In this section we concentrate on two points. l"ie first calulate 

the splitting between the N2-l particles in the adjoint representation 

of SU(N) and those in the singlet representation. The N2 bound 

states split such that the adjoint representation has lower energy. 

20 

We then point out the non smooth connection between the large N and 

large coupling limits of CPN·l. 

There are two contributions to the potential between a zi 

particle and an antiparticle, a long range piece and a short range 

piece. In the limit of large N and large mass the system is 

non-relativistic and may be solved by a Schroedinger equation. We 

will perform the calculation in the language of Ref. 11. The inter-

action between z. and z. when i -1 j is due to t channel 
l J 

exchange of the '\ field. This gives rise to a potential at large 

separation 

v(r) lrl 

where m is the mass of the z. 
l 

qum1ta. The energy levels are given 

by the solution of the S::hroedinger equation 

0 

where E is the binding energy of the state. The unnormalized wave 

functions are 

</! (x) 

with 

j A(gl/3x- g-Z/3mE), X? 0 

tA(-l/\- g-Z/ 3mE), x<O 

g = 

and A(x) is an Airy function. The eigenvalue conditions are: 



even parity: A' ( -g 

odd parity: A( -g- 2/3mE) 0 

where a prime denotes differentation wi t.h respect to the arguments. 

The ground state is of even parity; thereafter the states are of 

alternating parity. 

Now in the case of i there is an additional interaction 

contribution to the potential. This is a contact term due to the 

s channel propagation of and the short range field a . In 

* fact when s = the scalar field interaction is zero, and the 

additional contribution to the potential is 

v(r) 

TI1is potential is repulsive and naively of order one in the 1/N 

expansion; &mensional analysis corrects this false irnpression. 12 

Thus the eigenvalue condition for the singlet states is 

even parity 

odd parity A( -g -2/3mE) 0 

The lowest singlet is still even parity but it is higher than the 

corresponding adjoint state for which there is no contact term. The 

spectrum in the large N limit is indicated in Figure 7. Several 

comments should be made about this spectrum. The ground state is 

an adjoint and there is no degeneracy in the leading order. 
,------------

This can he seen im8Jediately from the four-point function given 

in Section II. 
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On the other hand the second even parity state is de~ner::te with the 

first odd parity state in the large N limit. It is conceivable 

that the N = 2 case (equivalent to the 0 (3) /0 (2) non -linear 

sigma model) is reached smoothly by the higher states becoming 

unstable as N is reduced. Secondly we can estimate the value 

of N for which the non-relativistic calculation is valid: 

N >> 12 (1.06)
3

/
2 

"" 40 

Finally we contrast this spectrum with that obtained from the 

strong coupling limit of the lattice version of the theory as 

formulated by Stone. 8 His spectrum is generated by site 

excitations is indicated in Figure 8a. The energies are proportional 

to the eigenvalues of the quadratic Casimir operators 

in the various representations. We note however that the energy 
of two adjoint representations on different sites 

(E 2N) is less than that of the 

first excited state given by Stone (2N + 2), so the spectrwu 

should really be that in Figure 8b. The ground state is clearly 

the same as that obtained in the large N limit. It is also clear 

that for the higher lying states the limits of large N and strong 

coupling on the lattice do not commute. There must be considerable 

level crossing if the states are to correspond. 

CONCLUSIONS 

We have looked at the model in terms of a non-linear 

representation having unconstrained variables. The Lagrangian was 

treated in a unitary gauge and a gauge ambiguity emerged in the 

form of a residval gauge invariance for a certain class of field 
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configurations. This appears to be similar to the 

Gribov ambiguity in QCD. A solution of the model in the 1/N limit 

shows that the vacuum chooses field configurations which possess the 

ambiguity (and which give CPN- 1 its non-trivial topological 

structure). This is reflected in the appearence of a gauge field with 

dynamics. TI1e ambiguity appears in a much more dramatic manner in 

the Hamiltonian formulation. A pole appears at value of the field 

having the ambiguity. 

We are able to determine the 1/N vacuum of the Hamiltonian 

by means of a Hartree approximation (useful for the O(N)/O(N-1) 

case also). Tile pole appears to be a signal for confinement in 

that its effects can be eliminated by considering only charge 

neutral states. We show that bound states with bag like properties 

have finite energy, although attempts to obtain the long range-force 

in an axial gauge should still be made. The spectrum calculated in 

the non-relativistic limit (valid for N >> 40) reveals that the 

ground state is in the adjoint representation of SU(N). Tile 

comparison with the lattice version of the model in the strong 

coupling limit shows that although the ground states are the same, 

the higher lying states are radically different and the connection 

between the two lirni ts is not smooth. Tile next step·.would be" ,to complete 

the linearization of the system, namely to obtain CPN-lfor large N 

as a scalar field theory of charge neutral states. 
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FIGURE CAPTIONS 

Figure l: To leading order in l : (Cji¢)n: = (. + 0( N ) 
N N' 

where c]i¢ - 2: This can be illustrated 
i=l 

schematically by the fact that (a) is down by a factor 

1 relative to graph (b), where the color label flows N as 

indicated by the arrow. 

Figure 2: The bare four-point vertex We decompose f 

and analyze the 

separate pieces in the text. 

Figure 3: Diagramatic illustration of the four types of terms given 

4: 

Figure 5: 

Figure 6: 

Figure 7: 

in Fig. 2. 

Schematic representation of the functions. The 

notation of Fig. 3 is used here. Note that for if j, the 

Tji are simply reflections of 

displayed above. 

T .. 
l) 

and hence are not 

Graphical representation of the matrix 2:. 

Graphical representation of the term which leads to a long 

range force. 

Spectrum of bound states in the large N limit. 1be SU(N) 

representation and parity of the lowest lying states are 

schematically indicated. The energy increases from bottom 

to top (scale is arbitrary). 

Figure 8: SpectrUJll of bmmd states in the strong coupling limit of 

the lattice version of the theory (see Ref. 8). 

(a) SpectrUJll due to single-site excitation alone. 

(b) SpectrUJll due to excitation of one and more than one 

site. 

The SU(N) representations of the levels are given with the 

notation: 

in the row 

[pl, Pz, 0 o• ll 

SU(N) adjoint is 

for all other k. 

to a YQlt1g diagram consisting of nk boxes 

;;;;, n2 ;;;o o ~nN) we have the representation 

where pk = - nk. In this notation, the 

[ 1,0, .•• ,0, l] , i.e. pl 1 
= l, () 

Finally, by SYM(A @B), we mean the SU(N) 

representations contained in the symmetric part of the tensor product 

of representations A and B. 
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